Formal Approaches to Japanese Linguistics 8 Mie University: Tsu, February 18, 2016

A Labeling-based Account of Japanese Imperatives* Jason Ginsburg¹ Naomi Ogasawara² ²University of Aizu ¹Osaka Kyoiku University

Strengthening refers to when an SO that is initially too weak to be labeled obtains prominent features

An SO can be labeled via strengthening.

Figure 2: Labeling via strengthening

that are capable of labeling.

1. Introduction

- Problems of Projection (POP) (Chomsky 2013, 2015)
- Core syntactic operations are connected with the need for Syntactic Objects (SOs) to be labeled. We explain how a POP-based computer model constructs the
- derivations of basic imperative sentences in Japanese
- We examine a real-world application of this model.
- Can a model of syntax have applications for disaster warnings?

2. Core assumptions

Chomsky (2013, 2015):

- The phase heads v* and C have uninterpretable phifeatures uPhi.
 - uPhi are inherited by T from C.
- uPhi are inherited by a verbal root V from v^* . A Labeling Algorithm determines the label of a syntactic object (SO) by finding prominent features that are capable of labeling (e.g., phi-features).

(c) No label

(b) X is too weak to label

(d) Shared prominent features label XP and YP have identical Phi-features

Proposals (cf. Ginsburg To Appear): (1) Uninterpretable features are passed onto a complement that is too weak to label (based on Chomsky 2013, 2015).

(2) Feature inheritance (cf. Fong, 2014) leads to unified instances of a feature on multiple Syntactic Objects.

X and Y are weak uPhi of v* are passed from v* to X

X inherits features

that are capable of

Strengthened X

labeling

labels

- unified
- checked, all unified instances of uPhi are checked

- uPhi are passed from X to Y uPhi on v*, X, and Y are
- If any instance of uPhi is

Figure 3: Feature transfer and unification

Given an unlabeled {XP, YP} structure, if XP moves out, then the label of YP becomes the label

Figure 4: Labeling due to movement

In languages such as English, T and a verbal root must be labeled via Phi-features shared with a remerged SO.

Figure 5: Shared Phi-features are necessary for labeling projections of T and verbal root

Proposal:

(3) in Japanese, T and verbal roots are labeled via strengthening.

• Strengthening does not require phi-features that are

shared with a remerged SO.

3. Target Derivation

(4) Minna-san-wa hinan-shite kudasai Everyone-Top evacuate-do please Everyone, please evacuate. (Adapted from a Nemuro, Hokkaido evacuation call)

(5) Proposals about (4):

- shite kudasai 'please do' contains a V-V serial verb construction (cf. Nishiyama 1998) consisting of two verbal roots that Merge with a single \mathbf{v}^* .
 - -te is part of the verbal projection (cf. Sugita 2009)
- assigns a subject theta-role
- Both verbal roots, shite and kuda, essentially have a single subject.

Figure 6: v*P of (4) before labeling

- n Merges with the root hinan 'evacuation' and n labels
- n is strong enough to label.
 Verbal root V_shite (shite 'do') is Merged.
- Verbal root V_kuda (kuda + sai = 'please') is Merged.
- verbal roots are too weak to label
- The phase head v* is Merged.
- uPhi of v* are passed to V_kuda. uPhi are passed from V_kuda to V_shite
- v*, V kuda, V shite contain unified uPhi.
- V_kuda _shite_V_kuda Strengthened V kuda labels V shite Strengthened V shite labels hinan

- The uPhi features on v* Agree with the nominal hinan 'evacuation'. uPhi on v* are checked by the valued phi-features of hinan
 - 'evacuation'.
 - hinan 'evacuation' obtains Case
 - unified uPhi on V_kuda and V_shite are checked.
 - V_kuda and V_shite are strengthened

The Labeling Algorithm finds the checked phi-features on the strengthened V_kuda and V_shite.

V_kuda and V_shite label.

Figure 8: CP of (4) before labeling

- The subject minna-san 'everyone' is Merged with the v* projection.
 - unlabeled {XP, YP} structure
- Merge T sai.
 - -sai in kudasai 'please' is a T head.
 - T_sai is too weak to label.
 C_Top is Merged.
- C_Top is a C phase head with a Topicalization feature Top.

uPhi from C_Top are inherited by T_sai.

Proposal:

(6) Movement of an SO occurs to create a structure that can be labeled for semantic reasons

Figure 7: v*P of (4) after labeling

Agree(C Top.minna-san)

- The subject remerges with C_Top, in accord with (6).
- Movement creates a structure that can be labeled by a shared Topic feature.
- The subject has a Top feature that checks a uTop feature on C_Top.
- The subject obtains Case from C Top.
- Top surfaces as the topic particle we 'Top'.

 The unified uPhi on T_sai are checked.

 The Labeling Algorithm labels the strengthened T_sai.
- The lower v* projection is labeled by v* because the subject has moved out.
- The subject and C_Top are labeled via shared Top

4. Cost

This computer model automatically computes the cost of core operations in a derivation. (7) Cost:

- Merge Cost: add 1 for Merge of X and Y.
 Feature Inheritance Cost: add 1 for inheritance of features from X by Y, regardless of the number of features involved
- Feature Checking Cost: add 1 for checking of features on X by features of Y, regardless of the number of features involved.
- Costs calculated for the derivation of (4)
- Merge Cost: 11; Feature Inheritance Cost: 3; Feature Checking Cost: 5
- Computing the cost of more complex constructions can be done instantaneously and accurately by a computer.
- If the computational cost of a sentence can be connected. with the actual cognitive burden of processing a sentence, then this type of model could be useful for determining optimal expressions for disaster situations, etc.

5. Conclusions

- We've shown how:
- this model automatically generates a Japanese imperative construction.
- this model calculates cost of a derivation.
- Research questions for future work:
- Can this model automatically generate a wider variety of imperative constructions in Japanese?
- What is the most accurate way to calculate cost of a derivation?
- How best can information about cost be used?
- Can cost can be linked to cognitive processing load, as measured in psycholinguistics experiments?
- There may be real-world applications for this type of model, especially if cost can be linked to cognitive processing load.