A Computational Model of Language Generation Applied to English Wh-questions

Jason Ginsburg
Center for Language Research
University of Aizu
Aizuwakamatsu, Japan
jginsbur @gmail.com

Abstract—This paper presents a computational model of lan-
guage generation, based on Phase Theory, that automatically
constructs sentences from underlying numerations. This model
incorporates explicit algorithms that determine selection and
merger of Lexical Items from a subnumeration, determine the
labels of Merged syntactic elements, account for movement of
elements within a derivation, and account for when phrases
are sent to Spell-Out. This paper shows how this model auto-
matically produces the derivation of an English wh-question.

Keywords-Phase Theory; wh-questions, computer modeling

I. INTRODUCTION

In this paper, I describe an attempt to create a precise and
unambiguous computational model of sentence generation
based on Phase Theory ([1], [2], [3], [4]). The goal of this
work is to model a version of Phase Theory on a computer
and in the process create a more accurate theory of how the
human mind generates sentences.

In Phase Theory, a sentence is constructed via a bottom-
up process in which Lexical Items (LIs) are selected from
a numeration, which consists of subnumerations, and are
Merged together. A derivation is broken up into phases for
which v* (transitive v) and C (also possibly D) are phase
heads. A derivation is subject to the Phase Impenetrability
Condition (PIC), which determines when phrases are sent to
Spell-Out (or to Transfer). The PIC has been formulated in
at least two ways (cf. [5]). According to one version ([1],
[2]), in (1), when the phase head v* or C is Merged, the
complement of the phase head, VP or TP, is sent to Spell-
Out. According to the other version [3], in (1), when C is
Merged, VP, which is the complement of v*, is sent to Spell-
Out.

M) lep Clrp T [ups V¥ [vp V .. 1]

Once a phrase is sent to Spell-Out, its contents are no
longer accessible to higher operations. Within Phase Theory,
a head with an uninterpretable feature functions as a probe
that Agrees with a goal (if present) that has a matching
interpretable feature. Crucially, a probe cannot agree with a
goal that is within a phrase that has been sent to Spell-Out.

There are some issues with Phase Theory that the research
presented in this paper attempts to clarify. First, it is gener-
ally assumed that an LI selects for another LI; e.g., v* selects

for V and V selects for DP, but it is not entirely clear how
this selection process works. Also, issues arise with respect
to the relationship between phases, subnumerations, and the
timing of Spell-Out. A subnumeration can consist of LIs that
form a phase, or it can consist of LIs that form a subject or
adjunct, which must be formed outside the main spine of a
derivation (see [6] for discussion of why this is the case).
Under the PIC, a phase edge remains visible to a higher
phase and a complement of a phase head is sent to Spell-
Out. Thus, there is a lack of a one-to-one correspondence
between sending an element off to Spell-Out and ‘phase-
hood’. Furthermore, the PIC creates problems for notions
of movement. In cases of long distance movement in wh-
questions, EPP features are required to bring a wh-phrase
to its scope position. In the question ‘What did you think
that Bob ate?’, ‘what’ must move through all intervening
phase edges to arrive in its scope position, as shown in (2).
To account for this fact, [1] suggests that a phase head can
optionally have an EPP feature that attracts a wh-phrase.
However, if a derivation proceeds in phases, and a lower
phase is not ‘aware’ of the contents of a higher phase, then
it is not clear how an intervening phase head can know that
it requires an EPP feature (cf. [7]).
(2) [cp What Cgpp| did [v«p twhat V¥[Epp| YOu think [cp
twhat that[EPP| Bob [yxp twhat V>l<[EPP| tpob ate tynatllll
This paper describes a computational model of language
generation that attempts to shed light on some of the com-
plex issues and problems with Phase Theory. This model is
novel in that it is, to my knowledge, the first attempt to create
a computer program that, from the perspective of Phase
Theory, automatically constructs interrogative constructions
from underlying numerations. In the following sections,
I describe the basic algorithms that this model uses and
I demonstrate how the model successfully constructs the
derivation of an English wh-question from a numeration.

II. HOw THE MODEL WORKS

I created a computer program, implemented in the Python
programming language, that is fed a numeration, from which
it automatically constructs the derivation of a sentence. In
this section, I explain the basic algorithms of this model.

The model incorporates a bare phrase structure (cf. [8])
view of a syntactic tree. A tree is formed from iterative
Merge of two elements at a time, and the label of the tree is
the label of one of the Merged elements; e.g., a phrase has
the label D instead of DP.

A derivation begins with a numeration such as (3), which
contains the LIs X and Y as well as another subnumeration
that contains the LIs Z and W, and so on.

(3) {X. Y. {Z. W, {P. {Z. W}, Q}}}

Once fed a numeration, the model searches for the most
embedded subnumeration by recursively applying (4).

(4) Choose Subnumeration: For each element in S (a sub-
numeration), if S is a set S’ (another subnumeration), select
S’

Given the numeration (3), the Selector (the element
of the model that selects elements from a numera-
tion/subnumeration) will, via iterative application of (3),
initially select the most embedded subnumeration {Z, W}.

Once a subnumeration is selected, LIs are selected and
Merged. The features that LIs contain play an important role
in this process.

As shown in Table 1, there is one type of unvalued feature
(a), and there are two types of valued features (b-c). The :_’
in (a) represents an unvalued feature. An unvalued feature

[| Feature [Description |
(a) | Unvalued | Feat:_
(b) | Valued +Feat:X
(c) | Valued Feat: X
Table I
FEATURES

of type (a) in Table 1 must be valued by a matching valued
feature. For example, T has unvalued phi-features ‘Phi:_’
that obtain a phi-feature value from a valued ‘Phi:X’. This
model also utilizes unvalued label features that are valued
by the label of a Merged element. For example, an unvalued
‘N:_’ feature contained on a D is valued by the ‘N’ label
of a noun complement. A valued feature of type (b) must
undergo a feature checking relation in which the valued
feature assigns an unvalued feature a value. The ‘+’ in the
‘+Feat:X’ signifies that the feature must be assigned. This
type of feature functions as a probe that searches for a
matching unvalued feature. For example, (structural) case is
a feature of this type; a ‘+Case:X’ feature that must assign a
value to a matching unvalued ‘Case:_’ feature. On the other
hand, the valued feature in (c) need not, but can, undergo a
feature checking relation. In this model, an N comes with
valued phi-features of type (c). These phi-features can value
matching unvalued phi-features on T. However, there is no
inherent need of the phi-features on N (unlike a case feature
on T) to value a matching unvalued feature.

Following [9], features are also specified for interpretabil-
ity. Interpretable features remain throughout a derivation and

uninterpretable features must be eliminated for a derivation
to converge. For example, phi-features on N are inter-
pretable, represented as ‘iPhi:X’ (‘i’ signifies interpretable),
and unvalued phi-features on T are uninterpretable, repre-
sented as ‘uPhi:_’ (‘u’ signifies uninterpretable), and must
be valued and eliminated. It is possible for there to be
valued and unvalued features that are interpretable or unin-
terpretable. However, when two features undergo an Agree
relation, either one feature is interpretable (e.g., valued phi-
features on a nominal) and the other is uninterpretable
(e.g., unvalued phi-features on T), or both features are
unintepretable (e.g., a valued uninterpretable case feature
on T, ‘u+Case:Nom’, and an unvalued uninterpretable case
feature on a nominal, ‘uCase:_’).

This model assumes that an EPP feature is a subfeature of
a feature, along the lines of [10]. Specifically, a ‘+Feat:X’
feature (feature b in Table 1) can have an EPP subfeature
that forces an element with a matching unvalued feature to
Merge directly with the element containing the ‘+Feat:X’;
the EPP subfeature is only satisfied if the LI with a match-
ing unvalued feature is Merged locally. For example, the
English finite T contains a ‘u+Case_EPP:Nom’ feature. The
EPP subfeature forces a subject, with an unvalued ‘Case:_’
feature, to undergo movement from the v* edge, assuming
that it is base generated in v*; the subject leaves a copy in
its base position and is re-Merged with T, thus eliminating
the EPP subfeature on T and valuing the Case feature on
the subject. The checked Case features are then eliminated
because they are uninterpretable.

The Selector utilizes the following algorithm to choose an
LI to select from the working subnumeration.
(5) Select LI:

(a) If nothing is selected, select an N (or a predicate).

(b) Search for an LI that has an unvalued feature that
matches the label of the tree. (Select the LI that has
the fewest number of unvalued features first.)

(c) A subnumeration must be emptied.

According to (5a), initially, an LI with the label N is

selected.! Once an LI is selected, the selection process pro-

ceeds via application of (5b-c). The tree in the derivational
working space has a label. Thus, in accord with (5b), there
is a search in the current subnumeration for an LI with an
unvalued label feature (e.g., ‘N:_’) that matches the label of
the tree (e.g., ‘N’). Note that the algorithim searches for LIs
with the fewest number of unvalued features first, in accord
with (5b). This is crucial to avoid indeterminancy in the
selection process. For example, assume that the label of the

tree is D and both V and v* are in the subnumeration. Both V

and v* have ‘uD:_’ features, since V selects a D complement

and v* selects a D subject. In this model, V has 2 unvalued
features ‘[uTNS:_, uD:_]’, where the unvalued ‘uTNS:_ "~
requires valuation from a matching valued feature on T. The

!n the absence of N, a predicate, such as a predicate adjective is selected.

v* has the 3 unvalued features ‘[uPhi:_, uD:_, uV:_]’, where

‘uPhi:_’ represents unvalued uninterpretable phi-features and

‘uV:_’ is an uninterpretable unvalued V feature (v* selects

for V). The v* has more unvalued features (3 versus 2 for

V) because it selects for both a V and a D. Thus, V is

Selected from the subnumeration. Lastly, (5c) requires that

if no LI is selected from a subnumeration ((5a-b) fail), and

there is only one LI remaining, that remaining LI is selected.

In this manner, this model incorporates an explicit method

for selecting LIs from a subnumeration.

After the selection process, there is a process of Merge

that proceeds as follows.

(6) Merge:

(a) If there is no tree for a selected LI to Merge with, then
repeat the selection process.

(b) Otherwise, Merge the selected LI with the tree.

(c) The LI that initially has an unvalued label feature gives
the tree its label.

(d) Otherwise, the label is the label of the tree.

(e) An unvalued label feature is valued by the label of the
sister LI

At the initial stage of a derivation, once an element is
selected, the selection process must be repeated to select
one more element (6a), so that there will be two elements
that can Merge. If there is already a tree in the derivational
workspace, then the selected element is Merged with the
tree. The label of a Merged syntactic object is determined
according to (6¢-d). Following (6¢), if a tree with label Y
Merges with an LI X, if X has an unvalued label feature
“Y:_’, then the label becomes that of X, producing a structure
of the form [x X Y] (a head-complement structure). In this
case, the unvalued label feature of X is valued by the label of
Y, in accord with (6e). If the label Y of a tree has an unvalued
label feature ‘X:_’, then when Y Merges with X, the label
remains Y, also in accord with (6c), resulting in [y X Y] (a
spec-head structure), and the unvalued label feature of Y is
valued by the label of X. According to (6d), if the label Y
of a tree and the selected LI X both lack any unvalued label
features, then the label remains that of Y (an adjunction
structure), resulting in [y X Y].
After Merge, there is a feature checking operation (7).

(7) Check Features:

(@) An unvalued ‘Feat:_’ feature is valued by a matching
valued feature.

() If a probe (e.g., ‘+Feat_EPP:X’) contains an EPP
subfeature, feature checking requires local Merge.
Feature checking results from a probe-goal relation, where
a probe must be contained within the label LI of a tree.
A probe is either a ‘Feat:_’ or a ‘+Feat:X’ feature, which
searches for an LI in the Merged structure that contains
a matching feature. An LI with a ‘Feat:_’ searches for a
matching valued feature, and an LI with a ‘+Feat: X’ feature
searches for a matching unvalued feature. If an LI with a

matching feature is found within the accessible portion of a
tree (a portion that has not been sent to Spell-Out), there
is a feature valuation relation (7a), resulting in checked
features. During the feature checking process, if a probe
‘+Feat: X’ contains an EPP subfeature, then the element
with the matching unvalued feature must be Merged locally
(7b). If the externally Merged LI does not have a matching
feature, then the EPP subfeature can force internal Merge.
For example, a ‘+Case_EPP:Nom’ on T forces a subject to
leave a copy in its base position and be re-Merged to T.

This process of Selection, Merge, and feature checking
is repeated until a subnumeration is emptied. Then, if the
Merged structure does not have a phase label v* or C*,
which is the case for adjuncts and subjects, it is reinserted
into the higher subnumeration (8), after which it functions
as any other LI and can be selected and re-Merged.

(8) Reinsert a complete non-phase into a higher subnumer-
ation.

Otherwise, these processes of Selection, Merge, and feature
checking continue until Spell-Out, which applies in the
following two conditions: a) Spell-Out applies to a lower
phase when the head of a higher phase is Merged (in
(9), when C* is Merged, the lower v* phrase is sent to
Spell-Out), and b) Spell-Out applies when a numeration is
emptied. I use * to indicate a phase head - thus v* and C*
are phase heads.

(9) [C* C* [T T [1)* vk [v* V]]

Note that an entire phase, not just the complement of a phase
head, is sent to Spell-Out at once (the entire v* phase in (9)
is sent to Spell-Out when C* is Merged). Thus, there is a
one-to-one correspondence between phase-hood and Spell-
Out.

Once a phrase is sent to Spell-Out, there is first a Last
Resort Check? operation (10) whereby an element that is
contained within a phrase that is about to be sent to Spell-
Out is reinserted into a higher subnumeration as a Last
Resort, thus saving a derivation from crashing.

(10) Last Resort Check: If an LI with an unvalued feature is
contained within a phrase that is about to be sent to Spell-
Out, reinsert this LI into the current working subnumeration.
In (11), when C* is Merged, the lower v* will be sent to
Spell-Out. If « contains an unvalued feature, then when C*
is Merged, « is reinserted into the higher subnumeration
headed by C*. The renumerated LI « then functions as any
other LI - it can be selected and re-Merged into a derivation.
(ID) [ox CFT [ox V¥V A[Feat:_] 11

This operation crucially does away with the need to posit
EPP features that exist solely for the purpose of bringing an
element to a Phase Edge (see section I).

Once the Last Resort Check operation is completed, there
is a Crash Check operation (12).

2I thank Sandiway Fong, with whom I developed this view of Last Resort.
Any problems with this view are my own.

(12) Crash Check: If there are any unvalued features ‘Feat:_’
or any unassigned valued features ‘+Feat:X’, the derivation
will crash.

If the derivation does not crash, then the relevant phrase
(an unordered set that contains LIs and other sets of LIs) is
linearized via recursive application of the algorithm in (13).
(13) Linearization:

(a) Find the most embedded phrase.

(b) A label LI is Merged to the left when the label LI
Merges for the first time.

(c) A non-label LI Merges to the left when the label LI has
previously undergone Merge.

(d) Reinsert the linearized element into the higher phrase.

The Selector chooses the most embedded phrase (a set of
Merged LlIs), linearizes it and then reinserts it into the larger
phrase that it is embedded in (if present). For English, when
a label LI Merges with another LI, and nothing has Merged
with the label before (first Merge), then, in accord with
(13b), the label is Merged to the left (a head precedes its
complement). Following (13c), Merge of another element
to the label (second Merge) is also to the left (a specifier
or adjunct precedes a head).> Once a phrase is linearized,
phonological rules apply; for example, T may be pronounced
as a form of ‘do’, etc. Since a derivation is built in a bottom
up fashion, a successfully linearized phrase that is contained
within a larger phrase is not actually pronounced until the
derivation is complete.

Lastly, this model incorporates a model of wh-phrases
that follows work by Cable [11]. Cable, based primarily
on evidence from Tlingit, proposes that in a wh-question,
a question particle ‘Qu’* Merges with a wh-phrase, and
furthermore, C attracts Qu rather than a wh-phrase. In a
wh-movement language (such as English), a wh-phrase is
the complement of Qu, and thus when Qu moves, it brings
its complement wh-phrase with it. In this computational
model, an English wh-phrase is is the complement of Qu. I
demonstrate how this works in the following section.

III. DERIVATION

In this section, I demonstrate how this model successfully
produces the derivation of the ‘simple’ English wh-question
(14). The computer model is fed the underlying numeration
(15), where ‘C_Int’ refers to an interrogative C and ‘PAST’
is a past tense T.

(14) What did John eat?

(15) {C_Int, PAST, {v*,{D, John}, Qu, D, what, eat}}
Crucially, the numeration and embedded subnumerations of
(15) are sets. The computer program automatically con-
structs a detailed step-by-step derivation of (15).

3The linearization order may require some variation with respect to
certain adjuncts. I leave this issue for futher research.

4Cable used ‘Q’.

51 assume that in English if there is an N, there there must be a D.

The model utilizes a ‘lexicon’ to automatically render
each LI into a list consisting of the label, the form, and the
features that are relevant for the derivation. For example,
the LI ‘John’ has the representation ‘[N, John, [iPhi:X]]’
in which its label is ‘N’, its form is ‘John’, and it has
interpretable and valued phi-features ‘iPhi:X’.

Initially, the Selector finds the most embedded subnumer-
ation, in accord with (4), and thus finds the subnumeration
containing the subject, which requires its own subnumeration
(see section I). In (16), the LIs in the subnumeration are
represented as lists containing the label, form, and features.®
(16) {[D, [uN:_, uCase:_]], [N, John, [iPhi:X]]}

Since no LIs have been selected (as this is the initial
stage of the derivation), the N ‘John’ is selected, in accord
with (5a). As only one element has been selected at this
point, the selection process is repeated, following (6a). The
D is then selected in accord with (5b) because it contains
an unvalued label feature ‘uN:_’ that matches the label of
the already selected N. The two LIs Merge and, following
(6¢), since D initially contains an unvalued label feature
‘uN:_’, the label of the newly formed syntactic object is
D. At this point, the unvalued label feature ‘uN:_’ of D
is valued by the N label of ‘John’, in accord with (6e).
Since this label feature is uninterpretable, it is eliminated.
The resulting Merged structure (a set that lacks linear order)
is shown in (17). The Merged LlIs are enclosed in brackets
containing the label, form, and features, and the head of the
Merged structure is the non-bracketed D. The ‘Chkd’ (for
‘checked’) in ‘ChkdN:X ’ refers to an uninterpretable feature
that has been deleted.

(17) {D, [D, [ChkdN:X, uCase:_]], [N, John, [iPhi:X]]}
Since the subnumeration is emptied and this syntactic object
with the label D is a non-phase, following (8), there is a
process of renumeration - the D phrase is reinserted into the
higher v* subnumeration.

The Selector then moves on to the next higher v* sub-
numeration (18), which contains the renumerated subject (a
set with the label D).

(18) {[V, eat, [uTNS:_, uD:_]], [N, what, [iPhi:X,
iWH:X]], [D, Qu, [uTyp:Int, iScp:_, uCase:_, uN:_]], [v*,
[u+Case:Acc, uPhi:_, uD:_, uV:_]], {D, [D, [ChkdN:X,
uCase:_]], [N, John, [iPhi:X]]}}

At this point, the N ‘what’ is selected, following (5a).” Since
there is only one selected element, the selection process is
repeated (6a) and a Q-particle ‘Qu’ is selected, in accord
with (5b), since it contains an unvalued label feature “‘uN:_’.
I assume, for the sake of simplicity, that Qu is a D.?
The process of Merge and feature checking apply, thereby
resulting in the Merged structure in (19), with the label D,
due to D’s initial unvalued label feature ‘uN:_ ’ (6c).

61 assume that an unvalued case feature ‘uCase:_’ occurs on D rather
than N. This issue though requires further examination.

"The ‘iWH:X’ feature represents a valued interpretable wh-feature.

80ne possibility is that a D head Merges wth Qu.

(19) {D, [D, Qu, [uTyp:Int, iScp:_, uCase:_, ChkdN:X]], [N,
what, [iPhi:X, iWH:X]]}

Qu contains a ‘uTyp:Int’, which is an uninterpretable clausal
typing feature ‘uTyp’ with the value ‘Int’ for interrogative.
Qu also contains an unvalued ‘iScp:_’ feature, that when
valued, gives a wh-phrase scope. In this model, the inter-
rogative C* contains an unvalued ‘iTyp:_’ feature and a
valued ‘uScp:X’ feature. When C and Qu undergo a feature
valuation relation (at the final stage of this derivation), the
‘uTyp:Int’ of Qu values the ‘iTyp:_’ of C, thereby giving
the clause an interrogative interpretation, and the valued
‘uScp:X’ of C values the ‘iScp:_’ of Qu, giving the wh-
phrase scope.’

The remainder of the v* phrase is constructed as follows.
There is again a search within the subnumeration for an
element that ‘selects’ a D, which is the label of the tree.
Although both V and v* have ‘uD:_’ features, V is selected
in accord with (5b), since it has fewer unvalued features
than v*. After Merge, the label of the tree is V, since V
initially contains an unvalued label feature (6¢). Another
search within the subnumeration results in selection of v*,
since it contains a ‘uV:_’ feature (5b) that matches the V
label of the tree. After Merge, the label is v* since v*
contains an unvalued label feature (6¢). Feature checking
applies and the unvalued phi-features ‘uPhi:_’ on v* function
as a probe that Agrees with and is valued by the valued phi-
features ‘iPhi:X’ on the N ‘what’. The ‘u+Case:Acc’ on v*
also acts as a probe that Agrees with and values the unvalued
‘uCase:_’ feature on D. Since case is uninterpretable on
both v* and D, the accusative case features are eliminated
from the derivation. At this point, the subnumeration only
contains one element - the renumerated subject. In accord
with the requirement that a subnumeration be emptied (5c¢),
the renumerated subject is Selected and Merged. Since the
tree label v* initially contains an unvalued label feature ‘uD’
- the label remains v* (6c).

The v* subnumeration has been emptied, and so the
Selector works on the next higher subnumeration (20).
(20) {[C*, [iTyp:_, uT:_, i+Force_EPP:X, u+Scp_EPP:X]],
[T, PAST, [u+Case_EPP:Nom, uPhi:_, i+TNS:PST, uv*:_,
uForce:_]]}

The Selector chooses T in accord with (5b), since T contains
an unvalued ‘uv*:_’ feature. After Merge, the label is T due
to T’s unvalued label feature (6¢). Next, there is a feature
valuation relation (7a) in which T’s unvalued ‘uPhi:_’ feature
functions as a probe and Agrees with, and is valued by, the
valued ‘iPhi:X’ of the subject ‘John’. T also contains the
feature ‘u+Case_EPP:Nom’, which is a ‘+Feat:X’ feature
with an EPP subfeature. The EPP subfeature prevents an
Agree relation alone from allowing this feature to value
a matching unvalued Case feature. In accord with (7b),

9The notion that Qu is responsible for clausal typing is discussed in [12],
[13], among others. I posit the existence of a scope feature in C based on
the fact that CP is a projection where clauses obtain scope [14].

the EPP subfeature forces the subject, which contains a
matching unvalued ‘Case:_’ feature, to leave a copy in its
base position and re-Merge with T. The label remains T,
in accord with (6d), since neither T nor the subject D
contains an unvalued label feature. Next, the phase head
C* is selected from the subnumeration, since it contains a
‘uT:_’ feature (5b).

When C* is Merged, the lower v* phase must be sent
to Spell-Out, assuming that when a higher phase head is
Merged a lower phase is sent to Spell-Out (see section
II). Initially, there is a Last Resort Check operation (10);
there is a search for an element in the lower v* phrase
that has an unvalued feature. Since Qu contains an unvalued
‘iScp:_’ feature, Qu (along with its complement wh-phrase)
is reinserted into the current subnumeration and a copy is left
in the base position. Next, there is a Crash Check operation
(12) whereby there is a search for unvalued or unassigned
features. In this case, none are found (copies are not visible
to this operation) and the v* phrase is linearized. Each set
contained within v*, beginning with the most embedded
set, is linearized according to the algorithm in (13). First
Merge between a label LI and another LI results in the
label occuring on the left, and any further Mergers (second
Merge) to the label result in the label occuring on the
right. Phonological rules apply and the tree in Figure 1 is
produced, which is automatically drawn by the computer
program. Note that this tree contains linearized copies of
both the subject ‘John’ and wh-phrase ‘what’. The line
through the v* edge signifies that the v* phrase has been
sent to Spell-Out. Uninterpretable features that have been
eliminated are preceded by the prefix ‘Chkd’.

v

ChkdCase:Acc
ChkdPhi:Xx

ChkdD:X
ChkdvV:X

ChkdTNS : PST

ChkdD:X u what
uTyp:Int iPhi:X
iSep:_ iWH:X
ChkdCase:Acc
ChkdN:X

chxdv:x John
uCase:_ iPhi:X

Figure 1. Linearized v* Phrase

The linearization process for the v* phrase is complete
and the derivation continues. The interrogative C* (see (20))
contains two ‘+Feat:X’ features that each contain an EPP
subfeature; a ‘i+Force_EPP:X’ feature and a ‘u+Scp_EPP:X’
feature. The ‘+Force:X’ feature, a modified version of Force
proposed by [15], is associated with determining whether or
not a clause is matrix or embedded by matching an unvalued
feature in T, and the ‘+Scp’ feature of C* is associated
with giving an element scope by valuing a matching Scope
feature, in this case on Qu. Initially, the ‘i+Force_EPP:X’
feature agrees with an unvalued matching ‘uForce_’ feature
on T and the EPP subfeature forces the matching LI, in this

case T, to leave a copy in its base position and to re-Merge
with C*, following (7b), thus successfully modeling T to C
movement in English matrix interrogatives. This re-Merge
operation results in feature-checking of the Force feature
and elimination of the EPP subfeature.'© Remember that
the subnumeration now contains the Qu/wh-phrase ‘what’,
which was renumerated as a Last Resort. This LI is the only
element left in the subnumeration, and thus it is selected,
in accord with (5¢). The label remains the same, C*, since
neither of the Merged elements has an unvalued label feature
(6d). After selection and Merge, feature checking results in
the ‘iScp:_’ feature of Qu being valued by the ‘uScp:X’ of
C*, thereby giving the Qu/wh-element scope. In addition,
the ‘iTyp:_’ feature on C is valued by the ‘uTyp:Int’ on Qu,
thereby typing the clause as an interrogative.

The entire numeration is emptied and the Spell-Out opera-
tions (10-13) apply, followed by application of phonological
rules, which result in T on C being pronounced as ‘did’, as
shown in the final tree in Figure 2.

cx

did
ChrdPhisX o
NS 1 PSTiTyp: Int
ase:NoRpkdscp: X
Chikdvr:x
hkdrore

Qu what
ChkdTyp:Int iPhi:X
iScp:X iWH:X
ChkdCase:Acc
Chkdw:x

iForce:X
@1 X chidrax

T(COpyT

chxapnizx D(C

cnkanix - John
chkdCase:NomiPhi:X

eat
ChXdV:X cpyaTns:PST
ChkdD:X Qu what
uTyp:Int iPhi:X

cnxav:x John iScp: iWH:X

ucase:_ iPhi:X ChidCaseihce
- Chkdn:X

Figure 2. Linearized C* Phrase

IV. CONCLUSION

I have demonstrated how this computational model
succesfully derives the syntactic representation of the
English wh-question (14). I leave for future work in depth
discussion of the many details of this model, as well as
its application to a variety of other examples in English
and other languages. Crucially, there are several ways in
which this model helps to clarify our understanding of
how language is generated, from the perspective of Phase
Theory. This model a) provides a specific algorithm for
selecting elements from a numeration/subnumeration, b)
provides a specific algorithm for determining the label of
a Merged syntactic object, c) incorporates a one-to-one
correspondence between phase-hood and the timing of
Spell-Out, and d) eliminates the need for superfluous EPP
features - via a Last Resort process. This model thus make

101 assume that the interrogative C* contains a ‘[+Scp_EPP:X]" with
an EPP subfeature in order to account for local movement of subject wh-
phrases, which due to their close proximity to C*, cannot result from the
Last Resort process.

progress towards clarifying how Phase Theory works, and
makes progress towards discovering precisely how the
human mind generates sentences.

ACKNOWLEDGMENT

I would like to thank Sandiway Fong, Simin Karimi, and
the three anonymous reviewers. All errors are my own.

REFERENCES

[1] N. Chomsky, Derivation by phase. MIT Working Papers in
Linguistics: MIT Occasional Papers in Linguistics Number
18, 1999.

[2] ——, “Minimalist inquiries: The framework,” in Step by step,
R. Martin, D. Michaels, and J. Uriagereka, Eds. Cambridge,
MA: MIT Press, 2000, pp. 89-155.

[3] ——, “Beyond explanatory adequacy,” in Structures and
beyond: The cartography of syntactic structures, volume 3,
A. Belletti, Ed. Oxford, UK: Oxford University Press, 2004,
pp. 104-131.

[4] ——, “On phases,” in Foundational issues in linguistic the-
ory; essays in honor of Jean-Roger Vergnaud, R. Freidin,
C. Otero, and M.-L. Zubizaretta, Eds. Cambridge, MA: MIT
Press, 2006, pp. 133-166.

[5] G. Grewendorf and J. Kremers, “Phases and cyclicity: Some
problems with phase theory,” The Linguistic Review, vol. 26,
pp. 385-430, 2009.

[6] K. Johnson, “Towards an etiology of adjunct islands,” Ms.,
University of Massachusetts at Amherst, 2002.

[7] C. Felser, “Wh-copying, phases, and successive cyclicity,”
Lingua, vol. 114, pp. 543-574, 2004.

[8] N. Chomsky, “Bare phrase structure,” in Evolution and rev-
olution in linguistic theory, H. Campos and P. Kempchinsky,
Eds. Washington, D.C.: Georgetown University Press, 1995,
pp. 51-109.

[9] ——, The Minimalist Program. Cambridge, MA: MIT Press,
1995.

[10] D. Pesetsky and E. Torrego, “T-to-C movement: Causes and
consequences,’ in Ken Hale: A life in language, M. Kenstow-
icz, Ed. Cambridge, MA: MIT Press, 2001, pp. 355-426.

[11] S. Cable, “The grammar of Q: Q-particles and the nature
of Wh-fronting, as revealed by the wh-questions of Tlingit,”
Ph.D. dissertation, Massachusetts Institute of Technology,
2007.

[12] J. Katz and P. Postal, An integrated theory of linguistic
descriptions. Cambridge, MA: MIT Press, 1964.

[13] J. Aoun and Y. Li, “Wh-elements in situ: Syntax or LF,”
Linguistic Inquiry, vol. 24, pp. 199-238, 1993.

[14] R. May, Logical Form. Cambridge, MA: MIT Press, 1985.

[15] L. Rizzi, “The fine structure of the left periphery,” in Elements
of grammar, L. Haegeman, Ed. Dordrecht: Kluwer, 1997,
pp. 281-337.

